pyfuzzy-toolbox Documentation¶
Welcome to pyfuzzy-toolbox, a comprehensive Python library for Fuzzy Systems with focus on education and professional applications.
Features¶
- 🧩 Core: Membership functions, fuzzy sets, linguistic variables, operators
- 🎛️ Inference: Mamdani and Sugeno/TSK systems
- 🧠 Learning: ANFIS, Wang-Mendel, metaheuristic optimization (PSO, DE, GA)
- 🌊 Dynamics: Fuzzy ODEs and p-fuzzy systems
- 🖥️ Web Interface: Interactive Streamlit app with one-command launch
Quick Links¶
-
Getting Started
Install pyfuzzy-toolbox and create your first fuzzy system in 5 minutes
-
User Guide
Learn how to use fuzzy systems to solve real-world problems
-
Quick Start Guides
Step-by-step practical guides for all modules with complete examples
-
API Reference
Complete reference for all classes and methods
-
Examples
Gallery of Colab notebooks with practical examples
Installation¶
Basic (Library only)¶
Full (with Web Interface)¶
Launch Web Interface¶
Learn more in the CLI Guide.
Quick Example¶
import fuzzy_systems as fs
# Create Mamdani system
system = fs.MamdaniSystem()
system.add_input('temperature', (0, 40))
system.add_output('fan_speed', (0, 100))
# Add terms
system.add_term('temperature', 'cold', 'triangular', (0, 0, 20))
system.add_term('temperature', 'hot', 'triangular', (20, 40, 40))
system.add_term('fan_speed', 'slow', 'triangular', (0, 0, 50))
system.add_term('fan_speed', 'fast', 'triangular', (50, 100, 100))
# Add rules
system.add_rules([('cold', 'slow'), ('hot', 'fast')])
# Evaluate
result = system.evaluate(temperature=25)
print(f"Fan speed: {result['fan_speed']:.1f}%")
Community & Support¶
- PyPI: pypi.org/project/pyfuzzy-toolbox
- GitHub: github.com/1moi6/pyfuzzy-toolbox
- Issues: Report bugs or request features
Citation¶
@software{pyfuzzy_toolbox,
title = {pyfuzzy-toolbox: A Comprehensive Python Library for Fuzzy Systems},
author = {Cecconello, Moiseis},
year = {2025},
url = {https://github.com/1moi6/pyfuzzy-toolbox}
}
License¶
MIT License - see LICENSE for details.